177 research outputs found

    Anisotropic Quantum Well Electro-Optics in Few-Layer Black Phosphorus

    Get PDF
    The incorporation of electrically tunable materials into photonic structures such as waveguides and metasurfaces enables dynamic, electrical control of light propagation at the nanoscale. Few-layer black phosphorus is a promising material for these applications due to its in-plane anisotropic, quantum well band structure, with a direct band gap that can be tuned from 0.3 to 2 eV with a number of layers and subbands that manifest as additional optical transitions across a wide range of energies. In this Letter, we report an experimental investigation of three different, anisotropic electro-optic mechanisms that allow electrical control of the complex refractive index in few-layer black phosphorus from the mid-infrared to the visible: Pauli-blocking of intersubband optical transitions (the Burstein–Moss effect); the quantum-confined Stark effect; and the modification of quantum well selection rules by a symmetry-breaking, applied electric field. These effects generate near-unity tuning of the BP oscillator strength for some material thicknesses and photon energies, along a single in-plane crystal axis, transforming absorption from highly anisotropic to nearly isotropic. Lastly, the anisotropy of these electro-optical phenomena results in dynamic control of linear dichroism and birefringence, a promising concept for active control of the complex polarization state of light, or propagation direction of surface waves

    Anisotropic Quantum Well Electro-Optics in Few-Layer Black Phosphorus

    Get PDF
    The incorporation of electrically tunable materials into photonic structures such as waveguides and metasurfaces enables dynamic, electrical control of light propagation at the nanoscale. Few-layer black phosphorus is a promising material for these applications due to its in-plane anisotropic, quantum well band structure, with a direct band gap that can be tuned from 0.3 to 2 eV with a number of layers and subbands that manifest as additional optical transitions across a wide range of energies. In this Letter, we report an experimental investigation of three different, anisotropic electro-optic mechanisms that allow electrical control of the complex refractive index in few-layer black phosphorus from the mid-infrared to the visible: Pauli-blocking of intersubband optical transitions (the Burstein–Moss effect); the quantum-confined Stark effect; and the modification of quantum well selection rules by a symmetry-breaking, applied electric field. These effects generate near-unity tuning of the BP oscillator strength for some material thicknesses and photon energies, along a single in-plane crystal axis, transforming absorption from highly anisotropic to nearly isotropic. Lastly, the anisotropy of these electro-optical phenomena results in dynamic control of linear dichroism and birefringence, a promising concept for active control of the complex polarization state of light, or propagation direction of surface waves

    Accretion of Chaplygin gas upon black holes: Formation of faster outflowing winds

    Full text link
    We study the accretion of modified Chaplygin gas upon different types of black hole. Modified Chaplygin gas is one of the best candidates for a combined model of dark matter and dark energy. In addition, from a field theoretical point of view the modified Chaplygin gas model is equivalent to that of a scalar field having a self-interacting potential. We formulate the equations related to both spherical accretion and disc accretion, and respective winds. The corresponding numerical solutions of the flow, particularly of velocity, are presented and are analyzed. We show that the accretion-wind system of modified Chaplygin gas dramatically alters the wind solutions, producing faster winds, upon changes in physical parameters, while accretion solutions qualitatively remain unaffected. This implies that modified Chaplygin gas is more prone to produce outflow which is the natural consequence of the dark energy into the system.Comment: 21 pages including 7 figures; published in Classical and Quantum Gravit

    The population of merging compact binaries inferred using gravitational waves through GWTC-3

    Get PDF
    We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} and 1700 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} and the NSBH merger rate to be between 7.8 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} and 140 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} and 44 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from 1.20.2+0.1M1.2^{+0.1}_{-0.2} M_\odot to 2.00.3+0.3M2.0^{+0.3}_{-0.3} M_\odot. We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 MM_\odot. We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above 60M\sim 60 M_\odot. The rate of BBH mergers is observed to increase with redshift at a rate proportional to (1+z)κ(1+z)^{\kappa} with κ=2.91.8+1.7\kappa = 2.9^{+1.7}_{-1.8} for z1z\lesssim 1. Observed black hole spins are small, with half of spin magnitudes below χi0.25\chi_i \simeq 0.25. We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio

    Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data

    Get PDF
    We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo run in the detector frequency band [10,2000] Hz[10,2000]\rm~Hz have been used. No significant detection was found and 95%\% confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about 7.6×10267.6\times 10^{-26} at 142 Hz\simeq 142\rm~Hz. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass -- boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC.Comment: 25 pages, 5 figure

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run

    Get PDF
    After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into “short” ≲1  s and “long” ≳1  s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo’s third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of 2–500 s in duration and a frequency band of 24–2048 Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude hrss as a function of waveform morphology. These hrss limits improve upon the results from the second observing run by an average factor of 1.8
    corecore